Nuprl Definition : Konig
11,40
postcript
pdf
Konig(
k
)
==
tree
:((
n
:
({0..
n
}
{0..
k
}))
).
==
(
i
,
j
:
. (
i
j
)
(
x
:({0..
j
}
{0..
k
}). (
(
tree
(<
j
,
x
>)))
(
(
tree
(<
i
,
x
>)))))
==
(
(
b
:
. (
x
:({0..
b
}
{0..
k
}).
(
(
tree
(<
b
,
x
>))))))
==
(
s
:
{0..
k
}. (
n
:
.
(
tree
(<
n
,
s
>))))
latex
clarification:
Konig(
k
)
==
tree
:((
n
:
({0..
n
}
{0..
k
}))
).
==
(
i
:
,
j
:
. (
i
j
)
(
x
:({0..
j
}
{0..
k
}). (
(
tree
(<
j
,
x
>)))
(
(
tree
(<
i
,
x
>)))))
==
(
(
b
:
. (
x
:({0..
b
}
{0..
k
}).
(
(
tree
(<
b
,
x
>))))))
==
(
s
:
{0..
k
}. (
n
:
.
(
tree
(<
n
,
s
>))))
latex
Definitions
x
:
A
B
(
x
)
,
,
A
B
,
P
Q
,
A
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
{
i
..
j
}
,
#$n
,
x
:
A
.
B
(
x
)
,
,
b
,
f
(
a
)
,
<
a
,
b
>
FDL editor aliases
Konig
origin